Classifying marine mammals signal using cubic splines interpolation combining with triple loss variational auto-encoder

Author:

Bach Nhat Hoang,Vu Le Ha,Nguyen Van Duc,Pham Duy Phong

Abstract

AbstractIn practical applications of passive sonar principles for extracting characteristic frequencies of acoustic signals, scientists typically employ traditional time-frequency domain transformation methods such as Mel-frequency, Short time Fourier transform (STFT), and Wavelet transform (WT). However, these solutions still face limitations in resolution and information loss when transforming data collected over extended periods. In this paper, we present a study using a two-stage approach that combines pre-processing by Cubic-splines interpolation (CSI) with a probability distribution in the hidden space with Siamese triple loss network model for classifying marine mammal (MM) communication signals. The Cubic-splines interpolation technique is tested with the STFT transformation to generate STFT-CSI spectrograms, which enforce stronger relationships between characteristic frequencies, enhancing the connectivity of spectrograms and highlighting frequency-based features. Additionally, stacking spectrograms generated by three consecutive methods, Mel, STFT-CSI, and Wavelet, into a feature spectrogram optimizes the advantages of each method across different frequency bands, resulting in a more effective classification process. The proposed solution using an Siamese Neural Network-Variational Auto Encoder (SNN-VAE) model also overcomes the drawbacks of the Auto-Encoder (AE) structure, including loss of discontinuity and loss of completeness during decoding. The classification accuracy of marine mammal signals using the SNN-VAE model increases by 11% and 20% compared to using the AE model (2013), and by 6% compared to using the Resnet model (2022) on the same actual dataset NOAA from the National Oceanic and Atmospheric Administration - United State of America.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3