Abstract
Detection of thermal activities of biological cells is important for biomedical and pharmaceutical applications because these activities are closely associated with the conformational change processes. Calorimetric measurements of biological systems using bimaterial microcantilevers (BMC) have increasingly been reported with the ultimate goal of developing highly sensitive and inexpensive techniques with real-time measurement capability techniques for the characterization of dynamic thermal properties of biological cells. BMCs have been established as highly sensitive calorimeters for the thermal analysis of cells and liquids. In this paper, we present a simulation model using COMSOL Multiphysics and a mathematical method to estimate the heat capacity of objects (treated here as a biological cell) placed on the surface of a microcantilever. By measuring the thermal time constant, which is obtained from the deflection curve of a BMC, the heat capacity of a sample can be evaluated. With this model, we can estimate the heat capacity of single biological cells using a BMC, which can potentially be used for the thermal characterization of different biological samples.
Funder
Deanship of Scientific Research, King Saud University
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献