Temporal Alignment of Dual Monitor Accelerometry Recordings

Author:

Brønd Jan ChristianORCID,Pedersen Natascha Holbæk,Larsen Kristian Traberg,Grøntved Anders

Abstract

Combining accelerometry from multiple independent activity monitors worn by the same subject have gained widespread interest with the assessment of physical activity behavior. However, a difference in the real time clock accuracy of the activity monitor introduces a substantial temporal misalignment with long duration recordings which is commonly not considered. In this study, a novel method not requiring human interaction is described for the temporal alignment of triaxial acceleration measured with two independent activity monitors and evaluating the performance with the misalignment manually identified. The method was evaluated with free-living recordings using both combined wrist/hip (n = 9) and thigh/hip device (n = 30) wear locations, and descriptive data on initial offset and accumulated day 7 drift in a large-scale population-based study (n = 2513) were calculated. The results from the Bland–Altman analysis show good agreement between the proposed algorithm and the reference suggesting that the described method is valid for reducing the temporal misalignment and thus reduce the measurement error with aggregated data. Applying the algorithm to the n = 2513 samples worn for 7-days suggest a wide and substantial issue with drift over time when each subject wears two independent activity monitors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3