Studying animal locomotion with multiple data loggers: quantifying time drift between tags

Author:

White Connor F.,Lauder George V.

Abstract

AbstractTemporal accuracy is a fundamental characteristic of logging technology and is needed to correlate data streams. Single biologgers sensing animal movement (accelerometers, gyroscope, magnetometers, collectively inertial measurement unit; IMU) have been extensively used to study the ecology of animals. To better capture whole body movement and increase the accuracy of behavior classification, there is a need to deploy multiple loggers on a single individual to capture the movement of multiple body parts. Yet due to temporal drift, accurately aligning multiple IMU datasets can be problematic, especially as deployment duration increases. In this paper we quantify temporal drift and errors in commercially available IMU data loggers using a combination of robotic and animal borne experiments. The variance in drift rate within a tag is over an order of magnitude lower (σ = 0.001 s h−1) than the variance between tags (σ = 0.015 s·h−1), showing that recording frequency is a characteristic of each tag and not a random variable. Furthermore, we observed a large offset (0.54 ± 0.016 s·h−1) between two groups of tags that had differing recording frequencies, and we observed three instances of instantaneous temporal jumps within datasets introducing errors into the data streams. Finally, we show that relative drift rates can be estimated even when deployed on animals displaying various behaviors without the tags needing to be simultaneously moved. For the tags used in this study, drift rates can vary significantly between tags, are repeatable, and can be accurately measured in the field. The temporal alignment of multiple tag datasets allows researchers to deploy multiple tags on an individual animal which will greatly increase our knowledge of movement kinematics and expand the range of movement characteristics that can be used for behavioral classification.

Funder

National Science Foundation

Office of Naval Research

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3