Evaluation of Quinoa Varieties for Adaptability and Yield Potential in Low Altitudes and Correlation with Agronomic Traits

Author:

Tang Peng12ORCID,Ren Aixia12,Jiang Zhijun12,Wang Rongzhen12,Cui Kaiyuan12,Wu Xiangyun3,Sun Min12,Gao Zhiqiang12,Anwar Sumera4

Affiliation:

1. College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China

2. Provincial-Ministerial Collaborative Innovation Center for High Quality and Efficient Production of Specialty Crops on the Loess Plateau, Jinzhong 030801, China

3. Shanxi Jiaqi Agricultural Science and Technology Co., Ltd., Taiyuan 030010, China

4. Department of Botany, Government College Women University, Faisalabad 38000, Pakistan

Abstract

The research conducted at the Shanxi Agricultural University’s Quinoa Experimental Model Base in Jinzhong, Shanxi Province, aimed to assess agronomic traits and their correlation with yield across 32 quinoa varieties. Three distinct yield categories emerged: low (≤1500 kg ha−1), middle (1500–2500 kg−1), and high (>2500 kg ha−1). High-yielding varieties demonstrated notable characteristics, including decreased plant height and increased leaf area per plant at maturity compared to low- and middle-yielding varieties. Moreover, the decline in leaf area per plant and root traits from flowering to maturity was less pronounced in the high-yielding varieties. The high-yielding varieties had a higher hardness of the stem base and middle stem by 12–13.7% and 6.3–11.5% compared to the medium- and low-yield varieties. Furthermore, high-yielding varieties indicated improvements in dry matter accumulation, decreased effective branch number, and increased main ear length and 1000-grain weight. Correlation analysis highlighted significant relationships between grain weight, yield, post-flowering senescence, and root and leaf characteristics. Structural equation model analysis revealed the negative impact of certain root and leaf traits on grain weight and yield, suggesting their importance in determining productivity. Notably, high-yielding varieties exhibited traits conducive to increased grain weight, including shorter plant height, slower root senescence, and enhanced post-flowering leaf resilience. These findings showed that understanding the relationship between agronomic traits and yield potential is crucial for optimizing quinoa production and promoting the sustainable development of this essential crop.

Funder

Science and Technology Assistance Project for Developing Countries

Key Project of Shanxi Province Research and Development Plan

technology innovation team of China Shanxi Province

Key Laboratory of Shanxi Province

“1331” Engineering Key Laboratory of Shanxi Province, and the

“1331” Engineering Key Innovation Cultivation Team of Shanxi Province

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3