Exogenous Application of Thiourea for Improving the Productivity and Nutritional Quality of Bread Wheat (Triticum aestivum L.)

Author:

Sher Ahmad,Wang XiukangORCID,Sattar Abdul,Ijaz Muhammad,Ul-Allah SamiORCID,Nasrullah Muhammad,Bibi Yamin,Manaf Abdul,Fiaz SajidORCID,Qayyum AbdulORCID

Abstract

Because it is a staple food, sustainable production of wheat is crucial for global food security. Arid and semi-arid regions are worst affected by climate change, which has resulted in poor productivity of different crops, including wheat. To this end, this study aimed to investigate the effect of foliage-applied thiourea on the growth, yield, and nutritional-quality-related traits of bread wheat. The treatments consisted of thiourea levels (control, 500, and 1000 mg L−1) factorally combined with two diverse wheat cultivars (Gandam-1 and Galaxy-2013) at different growth stages (tillering, booting, and heading) and was repeated over two years. The analysis of the data shows that thiourea treatments and the cultivars significantly (p ≤ 0.05) affected the growth, nutritional quality traits, and morphological traits, and the interaction of the two factors was also significant. Improvement in productivity and nutritional quality was observed from the application of thiourea in both cultivars. Galaxy-2013 performed best at 1000 mg L−1 thiourea application for both productivity- and nutritional-quality-related traits at the heading stage. In conclusion, exogenous application of thiourea improves the productivity and nutritional quality of wheat on sandy loam soils in semi-arid regions; however, for wider recommendations, more trials may be conducted across various agro-ecological regions.

Funder

Xiukang Wang

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference58 articles.

1. Evaluating the impact of seed rate and sowing dates on wheat productivity in semi-arid environment;Tahir;Int. J. Agric. Biol.,2019

2. Baseline simulation for global wheat production with CIMMYT mega-environment specific cultivars

3. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales

4. Climate-driven constraints in sustaining future wheat yield and water productivity

5. Food and Agriculture Organization of the United Nationshttp://www.fao.org/faostat/en

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3