Abstract
Drought stress at the reproductive stage in rice is one of the most important cause for yield reduction, affecting both productivity and quality. All Basmati rice varieties, including the popular cultivar “Pusa Basmati 1 (PB1)” is highly sensitive to reproductive stage drought stress (RSDS). We report for the first time, improvement of a Basmati cultivar for RSDS tolerance, with the introgression of a major quantitative trait locus (QTL), “qDTY1.1” into PB1. The QTL was sourced from an aus variety, Nagina 22 (N22). A microsatellite (simple sequence repeat (SSR)) marker “RM 431” located at telomeric end (38.89 mb) of chromosome 1, and located within a 1.04 mb QTL region was employed for foreground selection for qDTY1.1 in the marker assisted backcross breeding process. A set of 113 SSR markers polymorphic between N22 and PB1 were utilized for background selection to ensure higher recurrent parent genome recovery. After three backcrosses followed by five generations of selfing, eighteen near isogenic lines (NILs) were developed, through combinatory selection for agro-morphological, grain and cooking quality traits. The NILs were evaluated for three consecutive Kharif seasons, 2017, 2018 and 2019 under well-watered and drought stress conditions. RSDS tolerance and yield stability indicated that P1882-12-111-3, P1882-12-111-5, P1882-12-111-6, P1882-12-111-7, P1882-12-111-12, P1882-12-111-15 and P1882-12-111-17 were best in terms of overall agronomic and grain quality under RSDS. Additionally, NILs exhibited high yield potential under normal condition as well. The RSDS tolerant Basmati NILs with high resilience to water stress, is a valuable resource for sustaining Basmati rice production under water limiting production environments.
Funder
Indian Council of Agricultural Research
Subject
Agronomy and Crop Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献