Dynamic Mapping of Paddy Rice Using Multi-Temporal Landsat Data Based on a Deep Semantic Segmentation Model

Author:

Du Meiqi,Huang JingfengORCID,Wei PengliangORCID,Yang LingboORCID,Chai Dengfeng,Peng Dailiang,Sha Jinming,Sun Weiwei,Huang RanORCID

Abstract

Timely, accurate, and repeatable crop mapping is vital for food security. Rice is one of the important food crops. Efficient and timely rice mapping would provide critical support for rice yield and production prediction as well as food security. The development of remote sensing (RS) satellite monitoring technology provides an opportunity for agricultural modernization applications and has become an important method to extract rice. This paper evaluated how a semantic segmentation model U-net that used time series Landsat images and Cropland Data Layer (CDL) performed when applied to extractions of paddy rice in Arkansas. Classifiers were trained based on time series images from 2017–2019, then were transferred to corresponding images in 2020 to obtain resultant maps. The extraction outputs were compared to those produced by Random Forest (RF). The results showed that U-net outperformed RF in most scenarios. The best scenario was when the time resolution of the data composite was fourteen day. The band combination including red band, near-infrared band, and Swir-1 band showed notably better performance than the six widely used bands for extracting rice. This study found a relatively high overall accuracy of 0.92 for extracting rice with training samples including five years from 2015 to 2019. Finally, we generated dynamic maps of rice in 2020. Rice could be identified in the heading stage (two months before maturing) with an overall accuracy of 0.86 on July 23. Accuracy gradually increased with the date of the mapping date. On September 17, overall accuracy was 0.92. There was a significant linear relationship (slope = 0.9, r2 = 0.75) between the mapped areas on July 23 and those from the statistical reports. Dynamic mapping is not only essential to assist farms and governments for growth monitoring and production assessment in the growing season, but also to support mitigation and disaster response strategies in the different growth stages of rice.

Funder

National Natural Science Foundation of China

Eramus+ Programme of the European Union

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3