Hybrid Bermudagrass and Tall Fescue Turfgrass Irrigation in Central California: II. Assessment of NDVI, CWSI, and Canopy Temperature Dynamics

Author:

Haghverdi AmirORCID,Reiter MaggieORCID,Singh AmninderORCID,Sapkota Anish

Abstract

As the drought conditions persist in California and water continues to become less available, the development of methods to reduce water inputs is extremely important. Therefore, improving irrigation water use efficiency and developing water conservation strategies is crucial for maintaining urban green infrastructure. This two-year field irrigation project (2018–2019) focused on the application of optical and thermal remote sensing for turfgrass irrigation management in central California. We monitored the response of hybrid bermudagrass and tall fescue to varying irrigation treatments, including irrigation levels (percentages of reference evapotranspiration, ETo) and irrigation frequency. The ground-based remote sensing data included NDVI and canopy temperature, which was subsequently used to calculate the crop water stress index (CWSI). The measurements were done within two hours of solar noon under cloud-free conditions. The NDVI and canopy temperature data were collected 21 times in 2018 and 10 times in 2019. For the tall fescue, a strong relationship was observed between NDVI and visual rating (VR) values in both 2018 (r = 0.92) and 2019 (r = 0.83). For the hybrid bermudagrass, there was no correlation in 2018 and a moderate correlation (r = 0.72) in 2019. There was a moderate correlation of 0.64 and 0.88 in 2018 and 2019 between tall fescue canopy minus air temperature difference (dt) and vapor pressure deficit (VPD) for the lower CWSI baseline. The correlation between hybrid bermudagrass dt and VPD for the lower baseline was 0.69 in 2018 and 0.64 in 2019. Irrigation levels significantly impacted tall fescue canopy temperature but showed no significant effect on hybrid bermudagrass canopy temperature. For the same irrigation levels, increasing irrigation frequency slightly but consistently decreased canopy temperature without compromising the turfgrass quality. The empirical CWSI values violated the minimum expected value (of 0) 38% of the time. Our results suggest NDVI thresholds of 0.6–0.65 for tall fescue and 0.5 for hybrid bermudagrass to maintain acceptable quality in the central California region. Further investigation is needed to verify the thresholds obtained in this study, particularly for hybrid bermudagrass, as the recommendation is only based on 2019 data. No CWSI threshold was determined to maintain turf quality in the acceptable range because of the high variability of CWSI values over time and their low correlation with VR values.

Funder

Division of Agriculture and Natural Resources, University of California

U.S. Geological Survey

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3