Effects of Deficit Irrigation on Canopy Temperature Dynamics and Physiology of Landscape Groundcovers

Author:

Sapkota Anish1,Haghverdi Amir1,Merhaut Donald2

Affiliation:

1. Department of Environmental Sciences, University of California Riverside, Riverside, CA 92521, USA

2. Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA

Abstract

Identifying the irrigation-induced cooling effects from a particular plant species used for urban groundcovers while optimizing the rates of irrigation applications is important in regions with hot and dry summers. A 2-year (2020–21) study was conducted in Riverside, CA, USA, to evaluate the effect of irrigation rates on the canopy temperature dynamics of 10 urban groundcovers. Four reference evapotranspiration (ETo)-based irrigation treatments (20%, 40%, 60%, and 80% ETo) and 10 groundcovers were laid in a randomized complete block design and replicated three times. The effect of irrigation rates on the difference between canopy–air temperature (ΔT), leaf area index (LAI), and stomatal conductance (gs) were evaluated. All response variables were collected between May and October 2020 and 2021. The crop water stress index for five groundcovers was also computed. The ΔT was affected (P < 0.05) by irrigation rates, and groundcovers, including Rhagodia spinescens and Baccharis × ‘Starn Thompson’, maintained the canopy temperature less than the ambient air temperature for all irrigation rates imposed. For most of the groundcovers, the ΔT yielded a strong relationship with LAI (r = –0.41 to –0.73), and gs (r = –0.35 to –0.60). Crop water stress index also showed a strong correlation to normalized difference vegetation index (r = 0.42 to –0.72) and gs (r = –0.57 to –0.64). Irrigation-included cooling was evident in most groundcovers irrigated at higher rates; however, Rhagodia spinescens and Baccharis × ‘Starn Thompson’ were found to perform well in cooling ability and maintaining the canopy growth as evidenced by LAI. Our study showed that proper plant selection and irrigation management could help maintain green spaces and mitigate the urban heat island effect while conserving irrigation water.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Reference52 articles.

1. Evaluation of crop water stress index and leaf water potential for deficit irrigation management of sprinkler-irrigated wheat;Alghory A,2019

2. The environmental benefits of water recycling and reuse;Anderson J,2003

3. Canopy-air temperature differences and soil water as predictors of water stress of apple trees grown in a humid, temperate climate;Andrews PK,1992

4. Photovoltaic systems with vertically mounted bifacial PV modules in combination with green roofs;Baumann T,2019

5. Integrated water management: Emerging issues and challenges;Bouwer H,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3