Pyrroloquinoline Quinone Treatment Induces Rice Resistance to Sheath Blight through Jasmonic Acid Pathway

Author:

Li Sifu,Tang TaoORCID,Ma Guolan,Liu Ducai,Peng Yajun,Zhang Yuzhu

Abstract

Using bioactive inducers to enhance rice resistance is an effective means of green prevention and control of diseases during rice production. In a previous study, we found that foliar sprays of pyrroloquinoline quinone (PQQ) as the bioactive inducer could remarkably reduce the occurrence index of rice sheath blight (ShB) Rhizoctonia solani and increase the grain yield of rice under field conditions. However, little information is available on the mechanism of PQQ-induced rice resistance to ShB. In this study, the phenotype and mechanism of foliar sprayed PQQ-induced rice resistance to ShB were investigated by artificial inoculation method, RNA-seq technology, and quantitative real-time PCR (qRT-PCR) assay in the laboratory. The results showed that at 144 h after inoculation (hai) with the ShB C30 strain, many disease spots occurred obviously in a susceptible variety, Lemont (L), treated by 1.0 μmol/L PQQ (P+) with the disease score (DS) of 4.36, and almost all plants were withered and died under the ddH2O (P−) treatment alone, with the DS of 8.39. By comparison, the DS of a resistant variety, Gaopin 6 (G), was only 0.88 in the P+ treatment and 3.82 in the P− treatment. The results of hormone determination showed that jasmonic acid (JA) contents in the G and L varieties treated by P+ were increased significantly, by 78% and 197% respectively, at 48 hai. There was no significant difference in salicylic acid (SA) contents in these varieties between P+ and ddH2O (P−) treatments during the period of 48 hai. These results suggest that JA may play a key role in PQQ-induced rice resistance to ShB. The transcriptome analysis of the leaf sheath of the G and L varieties indicated that 165 and 250 differentially expressed genes (DEGs) were found in the intersection of LP− vs. LP+ and GP− vs. GP+ at 24 and 48 hai, respectively. Kyoto encyclopedia of genes and genomes analysis showed that these DEGs were related to plant–pathogen interaction, ribosome, plant hormone signaling transduction, mitogen-activated protein kinas signaling pathway, and phenylpropanoid biosynthesis. For ten highly expressed genes related to disease resistance, the results of qRT-PCR assay showed that eight genes, especially OsAOS2 and OsOSM1, were regulated positively, and two genes, OsGF14e and OsWRKY72, were regulated negatively. Among these, four up-regulated genes, OsOSM1, OsAOS2, OsHI-LOX, and OsLOX1, and one down-regulated gene, OsWRKY72, belonging to the JA signaling pathway, may be involved in PQQ-induced rice resistance to ShB. These results provide valuable information for green prevention and control of ShB by PQQ foliar spraying in the field.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Hunan Province

Natural Science Foundation of Changsha

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3