High Sowing Densities in Rainfed Common Beans (Phaseolus vulgaris L.) in Mexican Semi-Arid Highlands under Future Climate Change

Author:

Baez-Gonzalez Alma DeliaORCID,Fajardo-Díaz Ricardo,Garcia-Romero Giovanni,Osuna-Ceja Esteban,Kiniry James R.,Meki Manyowa N.

Abstract

Mexico holds the largest single bean production area in the world that is vulnerable to drought. Using field data and two future climate scenarios (RCP4.5 and RCP8.5) for the period 2020–2039, this study evaluated three common bean (Phaseolus vulgaris L.) cultivars planted under rainfed conditions at different densities in two locations in the north-central Mexican semi-arid temperate highlands. The sowing densities were 90,000, 145,000, and 260,000 plants ha−1 established in single rows (SR), three rows (3R), and six rows (6R), respectively. The climate change scenarios were derived from an assembly model integrating 11 general circulation models (GCM) selected for Mexico with a 30” arc resolution. The baseline climate was for the period 1961–2010. The ALMANACMEX model (USDA-ARS-INIFAP, Temple, USA) was parameterized and evaluated and then re-run using the climate scenarios. Beans planted at 6R showed the highest increase in seed yield in both climate scenarios, although the response varied by cultivar and time periods. For the growth habit III cultivars, Flor de Mayo Bajio showed no difference in yield, while Pinto Saltillo, a drought-resistant cultivar, showed increases of 13% to 16% at 6R only until 2033. Growth habit I cultivar Azufrado 2 showed more than 60% increases at 6R in both climate scenarios for the full period 2020–2039. These results suggest that considering the projected climate conditions, high sowing densities may be a viable agronomic option for common bean production under rainfed conditions in semi-arid temperate regions, such as the highlands of Mexico, in the near future; however, the selection of the cultivar is a key element to consider in this regard.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3