Effects of Boron and Zinc Micro-Fertilizer on Growth and Quality of Jujube Trees (Ziziphus jujuba) in the Desert Area

Author:

Tao Wanghai1,Zeng Senlin1,Yan Kuihao1,Alwahibi Mona S.2ORCID,Shao Fanfan1

Affiliation:

1. State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

2. Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Jujubes (Ziziphus jujuba) are a crucial industry in the arid region of Xinjiang, facing challenges such as water scarcity and low water use efficiency. This study focuses on jujube orchards located at the edge of the Taklimakan Desert to investigate whether applying trace elements can effectively enhance jujube growth, development, and fruit quality. By foliar spraying boron and zinc micro-fertilizers onto jujube leaves, we analyzed the effects of different doses on growth parameters, photosynthetic activity, crop yield, water use efficiency, and fruit quality. The results revealed that the length of the fruit branch, leaf area index, and fruit longitudinal/transverse diameter increased by 19.35%, 25.72%, and 32.9%/2.28%, respectively; net photosynthetic rate, transpiration rate, and stomatal conductance increased by 105.51%, 91.43%, and 75.3%, respectively, while intercellular CO2 concentration decreased by 13.09%; yield and water use efficiency improved by 16.95% and 12.68%, respectively; soluble sugar content, titratable acid content, and flavonoid content increased by 13.56%, 51.63%, and 86.12%, respectively. Based on these findings, the optimal application rate for boron micro-fertilizer was determined to be 3.51~3.59 kg/hm2, and for zinc micro-fertilizer, it was 3.16~3.32 kg/hm2. This study provides practical methods along with theoretical support for applying micro-fertilizers in arid regions.

Funder

Autonomous Region Major Science and Technology Project

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3