Bacillus methylotrophicus Could Improve the Tolerance and Recovery Ability of the Tomato to Low-Temperature Stress and Improve Fruit Quality

Author:

Li Guobin123,Peng Tieli123,Qu Feng123,Wang Junzheng123,Long Yanghao1,Hu Xiaohui123ORCID

Affiliation:

1. College of Horticulture, Northwest A&F University, Xianyang 712100, China

2. Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Xianyang 712100, China

3. Shaanxi Protected Agriculture Research Centre, Xianyang 712100, China

Abstract

Low-temperature stress seriously affects the growth, development, yield, and quality of tomato production. Bacillus methylotrophicus is an important plant growth promoting rhizobacteria (PGPR). However, the role of B. methylotrophicus under low-temperature stress is poorly understood. Accordingly, the effects of B. methylotrophicus (‘VL-10′) on tomato cold stress (15 °C/8 °C, 12 h/12 h, and day/night) were studied. B. methyltrophicus ‘VL-10′ was added into the substrate at the time of sowing, and the plants were treated at a low temperature for 2 weeks after 40 days of growth. We found that the low temperature reduced the spatial distribution of the aboveground and underground sections of tomatoes and the leaf SPAD and photochemical efficiency of PS II (Fv/Fm). After low-temperature stress, the tomato flowering was delayed, the vitamin C and lycopene content in fruit decreased, and the nitrate content increased. However, inoculated with B. methyltrophicus ‘VL-10′ during sowing promoted the growth of tomato seedlings, enhanced the native defense ability of the tomatoes, and effectively reduced the cold shock response of the roots to cold damage and the adverse effects of low temperature on leaf SPAD and Fv/Fm. After the cultivation at normal temperature, the inoculat B. methyltrophicus ‘VL-10′ could rapidly regain plant growth levers, and eliminate the delay of low temperature on flowering. TOPSIS analysis showed that the nutritional quality of tomatoes could be effectively improved by inoculation with B. methyltrophicus ‘VL-10′ regardless of normal cultivation or low-temperature stress.

Funder

National Key R&D Program of China

China Agriculture Research System

Technological Innovative Research Team of Shaanxi Province

Key Research and Development Program of Shaanxi Province in China

Scientific Startup Foundation for Doctors of Northwest A&F University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3