Abstract
The accurate and rapid acquisition of crop and weed information is an important prerequisite for automated weeding operations. This paper proposes the application of a network model based on Faster R-CNN for weed identification in images of cropping areas. The feature pyramid network (FPN) algorithm is integrated into the Faster R-CNN network to improve recognition accuracy. The Faster R-CNN deep learning network model is used to share convolution features, and the ResNeXt network is fused with FPN for feature extractions. Tests using >3000 images for training and >1000 images for testing demonstrate a recognition accuracy of >95%. The proposed method can effectively detect weeds in images with complex backgrounds taken in the field, thereby facilitating accurate automated weed control systems.
Funder
Jilin Province Science and Technology Development Plan
Key technology R&D project of Changchun Science and Technology Bureau of Jilin Province
Science and Technology Research Project of Jilin Provincial Department of Education
Subject
Agronomy and Crop Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献