Detection of Colchicum autumnale in drone images, using a machine-learning approach

Author:

Petrich LukasORCID,Lohrmann Georg,Neumann Matthias,Martin Fabio,Frey Andreas,Stoll Albert,Schmidt Volker

Abstract

AbstractColchicum autumnale are toxic autumn-blooming flowering plants, which often grow on extensive meadows and pastures. Thus, they pose a threat to farm animals especially in hay and silage. Intensive grassland management or the use of herbicides could reduce these weeds but environment protection requirements often prohibit these measures. For this reason, a non-chemical site- or plant-specific weed control is sought, which aims only at a small area around the C. autumnale and with low impact on the surrounding flora and fauna. For this purpose, however, the exact locations of the plants must be known. In the present paper, a procedure to locate blooming C. autumnale in high-resolution drone images in the visible light range is presented. This approach relies on convolutional neural networks to detect the flower positions. The training data, which is based on hand-labeled images, is further enhanced through image augmentation. The quality of the detection was evaluated in particular for grassland sites which were not included in the training to get an estimate for how well the detector works on previously unseen sites. In this case, 88.6% of the flowers in the test dataset were detected, which makes it suitable, e.g., for applications where the training is performed by the manufacturer of an automatic treatment tool and where the practitioners apply it to their previously unseen grassland sites.

Funder

Bundesanstalt für Landwirtschaft und Ernährung

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3