Effects of α-Naphthylacetic Acid on Cadmium Stress and Related Factors of Tomato by Regulation of Gene Expression

Author:

Guan Xiaoxi,Sui Changling,Luo Kecui,Chen Zhifeng,Feng ChaoyangORCID,Dong Xiufen,Zeng Boping,Dong Xian,Liu Xiaofang

Abstract

Cadmium (Cd) is absorbed and accumulated by crops, and it adversely affects plant growth and development. To explore the effect of exogenous auxin on Cd stress, we applied different concentrations of α-naphthaleneacetic acid (NAA) and the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) to tomato plants exposed to Cd stress in a hydroponic system. NAA and TIBA at different concentrations were used under Cd stress. Plant growth, root morphology, and auxin distribution were observed. Lipid peroxidation and antioxidant enzyme activities in leaves, cadmiumcontent, and migration coefficient of plants were determined. Transcriptome sequencing and qRT-PCR were used to analyze the differentially expressed genes. Results showed that auxin was concentrated in the leaf veins, stem base, and roots in P5::GUS “Chico III” transgenic tomato, indicating NAA polar transport to the roots and promotion of root growth under Cd stress. Cd was absorbed by the roots and transported to the shoots. It then inhibited plant growth and promoted antioxidant enzyme activities, O2− production, H2O2 accumulation, and membrane lipid peroxidation. Treatment with 0.5 μM NAA improved antioxidant enzyme activities, reduced reactive oxygen, maintained membrane permeability, and decreased malondialdehyde and proline contents. Transcriptome analysis revealed that NAA activated a large number of genes in the roots: 1998 genes were differentially expressed in response to Cd or NAA treatment, and 1736 genes were specifically expressed in response to NAA treatment under Cd stress. Among the differentially expressed genes, tomato metallocarboxypeptidase inhibitor TCMP-2 (2A11) and Solanum lycopersicum heavy metal-associated isoprenylated plant protein (HIPP) 7-like (LOC101264884), which are closely related to plant response to heavy metal stress, may be the key sites of NAA. In conclusion, the NAA-mediated response to Cd stress was closely associated with “defense response” genes in shoots and “oxidoreductase activity, oxidizing metal ions” and “response to auxin” genes in roots.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3