High Phosphorus Acquisition and Allocation Strategy Is Associated with Soybean Seed Yield under Water- and P-Limited Conditions

Author:

Feng Yun-Yin,He JinORCID,Jin Yi,Li Feng-MinORCID

Abstract

Both water stress and P deficit limit soybean seed yield, but the effects of water regimes and P application rates, their interaction on P status, acquisition, and partitioning, and their roles in yield performance have not been well-studied. Two soybean genotypes (Huangsedadou (HD) and Zhonghuang 30 (ZH)) with contrasting seed yield and root dry weight (DW) were used to investigate the P status, P acquisition, P partitioning, and yield formation under two water regimes (well-watered (WW) and cyclic water stress (WS)) and three P rates (0 (P0), 60 (P60), and 120 (P120) mg P kg−1 dry soil). The results show that increased P and water supply increased the seed yield, shoot and root DW and P concentrations and accumulations in different organs. Cultivar ZH had a significantly higher seed yield than HD at P60 and P120 under WS and at P0 under WW, but a lower seed yield at P60 and P120 under WW. Cultivar ZH had a significantly higher P harvest index and P acquisition efficiency, but a significantly lower shoot and root DW than HD. The interaction between water treatments and P rates had significant effects on leaf and stem P concentration. Cultivar ZH had significantly lower P partitioning to leaves and stems but significantly higher P partitioning to seeds than HD. The seed yield was positively correlated with leaf and seed P accumulations and P acquisition efficiency under WS. We conclude that (1) adequate water supply improved the P mobilization from leaves and stems at maturity, which may have improved the seed yield; and (2) the high P acquisition efficiency is coordination to high P partition to seeds to produce a high seed yield under water- and P-limited conditions.

Funder

National Natural Science Foundation of China

Guizhou Science and Technology Support Program Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3