Maize Small Leaf Spot Classification Based on Improved Deep Convolutional Neural Networks with a Multi-Scale Attention Mechanism

Author:

Yin Chenghai,Zeng Tiwei,Zhang Huiming,Fu Wei,Wang Lei,Yao Siyu

Abstract

Maize small leaf spot (Bipolaris maydis) is one of the most important diseases of maize. The severity of the disease cannot be accurately identified, the cost of pesticide application increases every year, and the agricultural ecological environment is polluted. Therefore, in order to solve this problem, this study proposes a novel deep learning network DISE-Net. We designed a dilated-inception module instead of the traditional inception module for strengthening the performance of multi-scale feature extraction, then embedded the attention module to learn the importance of interchannel relationships for input features. In addition, a dense connection strategy is used in model building to strengthen channel feature propagation. In this paper, we constructed a data set of maize small leaf spot, including 1268 images of four disease grades and healthy leaves. Comparative experiments show that DISE-Net with a test accuracy of 97.12% outperforms the classical VGG16 (91.11%), ResNet50 (89.77%), InceptionV3 (90.97%), MobileNetv1 (92.51%), MobileNetv2 (92.17%) and DenseNet121 (94.25%). In addition, Grad-Cam network visualization also shows that DISE-Net is able to pay more attention to the key areas in making the decision. The results showed that the DISE-Net was suitable for the classification of maize small leaf spot in the field.

Funder

Key R&D projects in Hainan Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference33 articles.

1. Advantages Analysis of Corn Planting in China;Wang;J. Agric. Sci. Tech.,2018

2. Discussion on Hazard Symptoms and Prevention Methods of Corn Southern Leaf Blight;Gao;J. Agric. Catas,2016

3. Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark

4. Detection of plant leaf diseases using image segmentation and soft computing techniques

5. Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3