SelectedAspects of Iodate and Iodosalicylate Metabolism in Lettuce Including the Activity of Vanadium Dependent Haloperoxidases as Affected by Exogenous Vanadium

Author:

Smoleń SylwesterORCID,Kowalska Iwona,Halka Mariya,Ledwożyw-Smoleń Iwona,Grzanka Marlena,Skoczylas ŁukaszORCID,Czernicka MałgorzataORCID,Pitala Joanna

Abstract

In marine algae, vanadium (V) regulates the cellular uptake of iodine (I) and its volatilization as I2, the processes catalyzed by vanadium-dependent haloperoxidases (vHPO). Relationships between I and vanadium V in higher plants, including crop plants, have not yet been described. Little is known about the possibility of the synthesis of plant-derived thyroid hormone analogs (PDTHA) in crop plants. The activity of vHPO in crop plants as well as the uptake and metabolism of iodosalicylates in lettuce have not yet been studied. This studyaimed to determine the effect of V on the uptake and accumulation of various forms of I, the metabolism of iodosalicylates and iodobenzoates and, finally, on the accumulation of T3 (triiodothyronine—as example of PDTHA) in plants. Lettuce (Lactuca sativa L. var. capitata ‘Melodion’ cv.) cultivation in a hydroponic NutrientFilm Technique (NFT) system was conducted with the introduction of 0 (control), 0.05, 0.1, 0.2, and 0.4 µM V doses of ammonium metavanadate (NH4VO3) in four independent experiments. No iodine treatment was applied in Experiment No. 1, while iodine compounds were applied at a dose of 10 µM (based on our own previous research) as KIO3, 5-iodosalicylic acid (5-ISA) and 3,5-diiodosalicylic acid (3,5-diISA) in Experiment Nos. 2, 3 and 4, respectively. When lettuce was grown at trace amount of I in the nutrient solution, increasing doses of V contributed to the increase of (a) I content in roots, (b) I uptake by whole lettuce plants (leaves + roots), and (c) vHPO activity in leaves (for doses 0.05–0.20 µM V). Vanadium was mainly found in roots where the content of this element increased proportionally to its dose. The content of V in leaves was not modified by V introduced into the nutrient solution. We found that5-ISA, 3,5-diISA and T3 were naturally synthesized in lettuce and its content increased when 5-ISA, 3,5-diISA were applied. Quantitative changes in the accumulation of organic metabolites (iodosalicylates and iodobenzoates) accumulation were observed, along with increased T3 synthesis, with its content in leaves exceeding the level of individual iodosalicylates and iodobenzoates. The content of T3 was not affected by V fertilization. It was concluded that iodosalicylates may participate in the biosynthesis pathway of T3—and probably of other PDTHA compounds.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3