Prediction of Draft Force of a Chisel Cultivator Using Artificial Neural Networks and Its Comparison with Regression Model

Author:

Abbaspour-Gilandeh YousefORCID,Fazeli Masoud,Roshanianfard AliORCID,Hernández-Hernández MarioORCID,Gallardo-Bernal IvánORCID,Hernández-Hernández José LuisORCID

Abstract

In this study, artificial neural networks (ANNs) were used to predict the draft force of a rigid tine chisel cultivator. The factorial experiment based on the randomized complete block design (RCBD) was used to obtain the required data and to determine the factors affecting the draft force. The draft force of the chisel cultivator was measured using a three-point hitch dynamometer and data were collected using a DT800 datalogger. A recurrent back-propagation multilayer network was selected to predict the draft force of the cultivator. The gradient descent algorithm with momentum, Levenberg–Marquardt algorithm, and scaled conjugate gradient descent algorithm were used for network training. The tangent sigmoid transfer function was the activation functions in the layers. The draft force was predicted based on the tillage depth, soil moisture content, soil cone index, and forward speed. The results showed that the developed ANNs with two hidden layers (24 and 26 neurons in the first and second layers, respectively) with the use of the scaled conjugate gradient descent algorithm outperformed the networks developed with other algorithms. The average simulation accuracy and the correlation coefficient for the prediction of draft force of a chisel cultivator were 99.83% and 0.9445, respectively. The linear regression model had a much lower accuracy and correlation coefficient for predicting the draft force compared to the ANNs.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference20 articles.

1. Non-Chemical Weed Control;Jabran,2018

2. Design, Manufacture and Evaluation of Rotary Cultivator;Safari,2008

3. Farm Machinery;Bell,2010

4. DRAFT OF PRIMARY TILLAGE IMPLEMENTS IN SANDY LOAM SOIL

5. Design and Construction of a High Speed Inter-Row Cultivator

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3