Soil Properties Prediction for Precision Agriculture Using Visible and Near-Infrared Spectroscopy: A Systematic Review and Meta-Analysis

Author:

Ahmadi ArmanORCID,Emami MohammadORCID,Daccache Andre,He Liuyue

Abstract

Reflectance spectroscopy for soil property prediction is a non-invasive, fast, and cost-effective alternative to the standard laboratory analytical procedures. Soil spectroscopy has been under study for decades now with limited application outside research. The recent advancement in precision agriculture and the need for the spatial assessment of soil properties have raised interest in this technique. The performance of soil spectroscopy differs from one site to another depending on the soil’s physical composition and chemical properties but it also depends on the instrumentation, mode of use (in-situ/laboratory), spectral range, and data analysis methods used to correlate reflectance data to soil properties. This paper uses the systematic review procedure developed by the Centre for Evidence-Based Conservation (CEBC) for an evidence-based search of soil property prediction using Visible (V) and Near-InfraRed (NIR) reflectance spectroscopy. Constrained by inclusion criteria and defined methods for literature search and data extraction, a meta-analysis is conducted on 115 articles collated from 30 countries. In addition to the soil properties, findings are also categorized and reported by different aspects like date of publication, journals, countries, employed regression methods, laboratory or in-field conditions, spectra preprocessing methods, samples drying methods, spectroscopy devices, wavelengths, number of sites and samples, and data division into calibration and validation sets. The arithmetic means of the coefficient of determination (R2) over all the reports for different properties ranged from 0.68 to 0.87, with better predictions for carbon and nitrogen content and lower performance for silt and clay. After over 30 years of research on using V-NIR spectroscopy to predict soil properties, this systematic review reveals solid evidence from a literature search that this technology can be relied on as a low-cost and fast alternative for standard methods of soil properties prediction with acceptable accuracy.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3