Delineation of Management Zones for Site-Specific Information about Soil Fertility Characteristics through Proximal Sensing of Potato Fields

Author:

Khan Humna,Farooque Aitazaz A.,Acharya Bishnu,Abbas FarhatORCID,Esau Travis J.,Zaman Qamar U.

Abstract

The delineation of management zones (MZs) has been suggested as a solution to mitigate adverse impacts of soil variability on potato tuber yield. This study quantified the spatial patterns of variability in soil and crop properties to delineate MZs for site-specific soil fertility characterization of potato fields through proximal sensing of fields. Grid sampling strategy was adopted to collect soil and crop data from two potato fields in Prince Edward Island (PEI). DUALEM-2 sensor, Time Domain Reflectometry (TDR-300), GreenSeeker were used to collect soil ground conductivity parameter horizontal coplanar geometry (HCP), soil moisture content (θ), and normalized difference vegetative index (NDVI), respectively. Soil organic matter (SOM), soil pH, phosphorous (P), potash (K), iron (Fe), lime index (LI), and cation exchange capacity (CEC) were determined from soil samples collected from each grid. Stepwise regression shortlisted the major properties of soil and crop that explained 71 to 86% of within-field variability. The cluster analysis grouped the soil and crop data into three zones, termed as excellent, medium, and poor at a 40% similarity level. The coefficient of variation and the interpolated maps characterized least to moderate variability of soil fertility parameters, except for HCP and K that were highly variable. The results of multiple means comparison indicated that the tuber yield and HCP were significantly different in all MZs. The significant relationship between HCP and yield suggested that the ground conductivity data could be used to develop MZs for site-specific fertilization in potato fields similar to those used in this study.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3