Abstract
Fusarium head blight (FHB) can cause contamination of cereal grain with mycotoxins. Triticale is also infected with FHB; however, it is more resistant than wheat to head infection. The aim of this study was to identify triticale lines that combine low head infection with low toxin contamination. Resistance to FHB of 15 winter triticale and three winter wheat lines was evaluated over a three-year experiment established in two locations. At the anthesis stage, heads were inoculated with Fusarium culmorum isolates. The FHB index was scored and the percentage of Fusarium-damaged kernels (FDKs) assessed. The grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone content. The average FHB index was 10.7%. The proportion of FDK was 18.1% (weight) and 21.6% (number). An average content of deoxynivalenol amounted to 7.258 mg/kg and nivalenol to 5.267 mg/kg. In total, it was 12.788 mg/kg of type B trichothecenes. The zearalenone content in the grain was 0.805 mg/kg. Relationships between FHB index, FDK, and mycotoxin contents were statistically significant for triticale lines; however, they were stronger for FDK versus mycotoxins. Triticale lines combing all types of FHB resistance were found, however the most resistant ones were less resistant that wheat lines with the Fhb1 gene.
Subject
Agronomy and Crop Science
Reference71 articles.
1. II .Wheat and Rye Hybrids
2. Triticale: A “new” crop with old challenges;Mergoum,2009
3. Triticale breeding-progress and prospect;Randhawa,2015
4. FAO: Faostat Agricultural Production Datahttp://faostat.fao.org
5. Grain for feed and energy;Meale,2015
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献