Abstract
Fusarium head blight (FHB) of wheat caused by Fusarium species is a destructive disease, causing grain yield and quality losses. Developing FHB-resistant cultivars is crucial to minimize the extent of the disease. The first objective of this study was incorporation of Fhb1 from a resistant donor into five Polish wheat breeding lines with good agronomical traits and different origins. We also performed a haplotype-based GWAS to identify chromosome regions in derived wheat families associated with Fusarium head blight resistance. As a result of marker-assisted backcrossing (MABC), five wheat combinations were obtained. Fungal inoculation and disease assessment were conducted for two years, 2019 and 2020. In 2019 the average phenotypic response of type II resistance was 2.2, whereas in 2020 it was 2.1. A haploblock-based GWAS performed on 10 phenotypic traits (related to type of resistance, year of experiment and FHB index) revealed nine marker–trait associations (MTA), among which six belong to chromosome 2D, two to 3B and one to 7D. Phenotypic variation (R2) explained by the identified haplotypes in haploblocks ranged from 6% to 49%. Additionally, an association weight matrix (AWM) was created, giving the partial correlation–information theory (PCIT) pipeline of 171 edges and 19 nodes. The resultant data and high level of explained phenotypic variance of MTA create the opportunity for data utilization in MAS.
Funder
Polish Ministry of Agriculture and Rural Development
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献