Prediction of Strawberry Leaf Color Using RGB Mean Values Based on Soil Physicochemical Parameters Using Machine Learning Models

Author:

Madhavi Bolappa Gamage KaushalyaORCID,Basak Jayanta Kumar,Paudel BholaORCID,Kim Na Eun,Choi Gyeong Mun,Kim Hyeon TaeORCID

Abstract

Intensively grown strawberries in a greenhouse require frequent and precise soil physicochemical constituents for optimal production. Strawberry leaf color analyses are the most effective way to evaluate soil status and protect against excess environmental nutrients and financial setbacks. Meanwhile, precision agriculture (PA) endorsements have been utilized to mimic solutions to these problems. This research aimed to create machine learning models such as multiple linear regression (MLR) and gradient boost regression (GBR) for simulating strawberry leaf color changes related to soil physicochemical components and plant age using RGB (red, green, and blue) mean values. The soil physicochemical properties of the largest varied colored leaves of strawberry were precisely measured by a multifunctional soil sensor from the rooting zones. Simultaneously, 400 strawberry leaflets were detached in each vegetative and reproductive stage, and individual leaves were captured using a digital imaging system. The RGB mean values of colored images were extracted using the image segmentation algorithms of image processing technique. Consequently, MLR and GBR models were developed to predict leaf RGB mean values based on soil physicochemical measurements and plant age. The GBR model vigorously fitted with RGB mean values throughout the growth stage, with R2 and RMSE values of (R = 0.77, 7.16, G = 0.72, 7.37, and B = 0.70, 5.68), respectively. Furthermore, the MLR model performed moderately with R2 and RMSE values of (R = 0.67, 8.59, G = 0.57, 9.12, and B = 0.56, 6.81) when consecutively predicting RGB mean values in strawberry leaves. Eventually, the GBR model performed more effectively than the MLR model with high-performance metrics. In addition, the leaf color model uses visualization technology to measure growth progress, and it performs well in predicting dynamic changes in strawberry leaf color.

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3