Author:
Chen Zhengmeng,Wang Fuzheng,Zhang Pei,Ke Chendan,Zhu Yan,Cao Weixing,Jiang Haidong
Abstract
Abstract
Background
Image processing techniques have been widely used in the analysis of leaf characteristics. Earlier techniques for processing digital RGB color images of plant leaves had several drawbacks, such as inadequate de-noising, and adopting normal-probability statistical estimation models which have few parameters and limited applicability.
Results
We confirmed the skewness distribution characteristics of the red, green, blue and grayscale channels of the images of tobacco leaves. Twenty skewed-distribution parameters were computed including the mean, median, mode, skewness, and kurtosis. We used the mean parameter to establish a stepwise regression model that is similar to earlier models. Other models based on the median and the skewness parameters led to accurate RGB-based description and prediction, as well as better fitting of the SPAD value. More parameters improved the accuracy of RGB model description and prediction, and extended its application range. Indeed, the skewed-distribution parameters can describe changes of the leaf color depth and homogeneity.
Conclusions
The color histogram of the blade images follows a skewed distribution, whose parameters greatly enrich the RGB model and can describe changes in leaf color depth and homogeneity.
Funder
The National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献