Interactive Effects of Nitrogen Application and Irrigation on Water Use, Growth and Tuber Yield of Potato under Subsurface Drip Irrigation

Author:

Kaur Amanpreet,Singh Kanwar Barjinder,Gupta Rajeev KumarORCID,Alataway Abed,Dewidar Ahmed Z.,Mattar Mohamed A.ORCID

Abstract

Potatoes are a high-value crop with a shallow root system and high fertilizer requirements. The primary emphasis in potato production is minimizing nitrogen-leaching losses from the shallow root zone through fertigation. Therefore, a field experiment was conducted for two consecutive years, 2018–2019 2019–2020 to assess the effect of nitrogen and irrigation amount and frequency on tuber yield, water balance components and water productivity of potatoes under surface and subsurface drip irrigation. The experiment was laid out in a split-plot design with three nitrogen levels (187.5 kg N ha−1 (N1), 150 kg N ha−1 (N2) and 112.5 kg N ha−1 (N3)) in main plots and six irrigation levels in the subsurface (drip lines were laid at 20 cm depth) and one surface drip in subplots. Irrigation scheduling was based on 100% of cumulative pan evaporation at an alternate (I1) and two-day interval (I2), 80% of cumulative pan evaporation at an alternate (I3) and two-day interval (I4), 60% of cumulative pan evaporation at an alternate (I5) and two-day interval (I6) and 80% of cumulative pan evaporation at alternate days with surface drip (I7). Our results showed that potato transpiration was higher in N1 and N2 compared to N3, while soil evaporation was higher in N3 over N1 and N2. Irrigation regimes I5 and I6 had lower transpiration than I1, I2, I3 and I7, while I7 had more soil evaporation than I1, I2 and I3. Leaf area index (LAI), dry matter accumulation (DMA), root mass density (RMD) and tuber yield in N1 and N2 were at par but significantly higher than N3. The LAI and DMA were statistically at par in I1, I2 and I3 but significantly higher than recommended irrigation (I7). Tuber yield was statistically at par in I1, I2, I3 and I7 but I3 and I7 saved 20% irrigation water compared to I1 and I2. On the other hand, real water productivity (WPET) under N1 and N2 were comparable in I3 and I4 but significantly higher than recommended practice (I7) as pooled evapotranspiration (ET) and soil evaporation (E) in I7 were 19.5 and 20.6 mm higher, respectively, than in I3. Among interactive treatment combinations, N1I1, N1I2, N1I3, N1I7, N2I1, N2I2 and N2I3 recorded the highest tuber yields without any significant differences among them. Treatment N2I3 saved 20% nitrogen and irrigation water compared to all other combinations. Water productivity in N1 and N2 was comparable in I3 and I4 but significantly higher than recommended practice (I7).

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference50 articles.

1. (2021, October 08). FAOSTAT (2021) FAO Statistical Database. Available online: http://faostat3.fao.org/home/index.htm.

2. Status of Punjab state in Indian potato processing industry;Rana;Indian J. Agric. Mktg,2011

3. Adaptation of Potato to Water Shortage: Irrigation Management and Enhancement of Tolerance to Drought and Salinity;Levy;Am. J. Potato Res.,2013

4. Singh, V., Yadav, S., and Yadava, R. (2018). Water Resources Management, Springer.

5. Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India;Brar;Agric. Water Manag.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3