Design of a Virtual Multi-Interaction Operation System for Hand–Eye Coordination of Grape Harvesting Robots

Author:

Liu Jizhan1,Liang Jin1,Zhao Shengyi1,Jiang Yingxing1,Wang Jie1,Jin Yucheng1

Affiliation:

1. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China

Abstract

In harvesting operations, simulation verification of hand–eye coordination in a virtual canopy is critical for harvesting robot research. More realistic scenarios, vision-based driving motion, and cross-platform interaction information are needed to achieve such simulations, which are very challenging. Current simulations are more focused on path planning operations for consistency scenarios, which are far from satisfying the requirements. To this end, a new approach of visual servo multi-interaction simulation in real scenarios is proposed. In this study, a dual-arm grape harvesting robot in the laboratory is used as an example. To overcome these challenges, a multi-software federation is first proposed to establish their communication and cross-software sending of image information, coordinate information, and control commands. Then, the fruit recognition and positioning algorithm, forward and inverse kinematic model and simulation model are embedded in OpenCV and MATLAB, respectively, to drive the simulation run of the robot in V-REP, thus realizing the multi-interaction simulation of hand–eye coordination in virtual trellis vineyard. Finally, the simulation is verified, and the results show that the average running time of a string-picking simulation system is 6.5 s, and the success rate of accurate picking point grasping reached 83.3%. A complex closed loop of “scene-image recognition-grasping” is formed by data processing and transmission of various information. It can effectively realize the continuous hand–eye coordination multi-interaction simulation of the harvesting robot under the virtual environment.

Funder

National Natural Science Foundation of China

Project of Jiangsu Modern Agricultural Machinery Equipment & Technology Demonstration and Promotion

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3