Cropland Suitability Assessment Using Satellite-Based Biophysical Vegetation Properties and Machine Learning

Author:

Radočaj DorijanORCID,Jurišić MladenORCID,Gašparović MateoORCID,Plaščak IvanORCID,Antonić Oleg

Abstract

The determination of cropland suitability is a major step for adapting to the increased food demands caused by population growth, climate change and environmental contamination. This study presents a novel cropland suitability assessment approach based on machine learning, which overcomes the limitations of the conventional GIS-based multicriteria analysis by increasing computational efficiency, accuracy and objectivity of the prediction. The suitability assessment method was developed and evaluated for soybean cultivation within two 50 × 50 km subsets located in the continental biogeoregion of Croatia, in the four-year period during 2017–2020. Two biophysical vegetation properties, leaf area index (LAI) and a fraction of absorbed photosynthetically active radiation (FAPAR), were utilized to train and test machine learning models. The data derived from a medium-resolution satellite mission PROBA-V were prime indicators of cropland suitability, having a high correlation to crop health, yield and biomass in previous studies. A variety of climate, soil, topography and vegetation covariates were used to establish a relationship with the training samples, with a total of 119 covariates being utilized per yearly suitability assessment. Random forest (RF) produced a superior prediction accuracy compared to support vector machine (SVM), having the mean overall accuracy of 76.6% to 68.1% for Subset A and 80.6% to 79.5% for Subset B. The 6.1% of the highly suitable FAO suitability class for soybean cultivation was determined on the sparsely utilized Subset A, while the intensively cultivated agricultural land produced only 1.5% of the same suitability class in Subset B. The applicability of the proposed method for other crop types adjusted by their respective vegetation periods, as well as the upgrade to high-resolution Sentinel-2 images, will be a subject of future research.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3