Author:
Barra Macarena,Meneses Claudio,Riquelme Stephanie,Pinto Manuel,Lagüe Martin,Davidson Charlotte,Tai Helen H.
Abstract
The potato is susceptible to water stress at all stages of development. We examined four clones of tetraploid potato, Cardinal, Desirée, Clone 37 FB, and Mije, from the germplasm bank of the National Institute of Agricultural Research (INIA) in Chile. Water stress was applied by suspending irrigation at the beginning of tuberization. Stomatal conductance, and tuber and plant fresh and dry weight were used to categorize water stress tolerance. Cardinal had a high susceptibility to water stress. Desirée was less susceptible than Cardinal and had some characteristics of tolerance. Mije had moderate tolerance and Clone 37 FB had high tolerance. Differential gene expression in leaves from plants with and without water stress were examined using transcriptome sequencing. Water stress-susceptible Cardinal had the fewest differentially expressed genes at 101, compared to Desirée at 1867, Clone 37 FB at 1179, and Mije at 1010. Water stress tolerance was associated with upregulation of the expression of transcription factor genes and genes involved in osmolyte and polyamine biosynthesis. Increased expression of genes encoding late embryogenesis abundant (LEA) and dehydrin proteins along with decreased expression of genes involved in nitrate assimilation and amino acid metabolism were found for clones showing water stress tolerance. The results also show that a water deficit was associated with reduced biotic stress responses. Additionally, heat shock protein genes were differentially expressed in all clones except for highly susceptible Cardinal. Together, the gene expression study demonstrates variation in the molecular pathways and biological processes in response to water stress contributing to tolerance and susceptibility.
Subject
Agronomy and Crop Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献