Stem Hydraulic Conductance, Leaf Photosynthesis, and Carbon Metabolism Responses of Cotton to Short-Term Drought and Rewatering

Author:

Lai Zhenlin1,Zhang Kaibao1,Liao Zhenqi1,Kou Hongtai1,Pei Shengzhao1,Dou Zhiyao1,Bai Zhentao1,Fan Junliang1ORCID

Affiliation:

1. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A & F University, Yangling 712100, China

Abstract

Water stress can trigger acclimation responses and damage plants. The aim of this study was to evaluate the integrative responses of cotton hydraulic conductance, leaf photosynthesis, and carbon metabolism to short-term drought and subsequent rewatering. A water-controlled pot experiment was conducted in 2020, with soil water drying continuing for one day (D1), two days (D2), and three days (D3) after it reached 40% ± 5% of the soil water holding capacity at the blooming stage of cotton, and the soil was then rewatered to the soil water holding capacity. We investigated how the stem hydraulic conductance, gas exchange, and biochemical traits of cotton were affected by imposed drought stress and subsequent rewatering. The hydraulic characteristics of cotton in the D2 and D3 treatments evolved with damage, complete closure of stomatal conductance, and complete deterioration of photosynthesis, in addition to severe floating changes in the carbon metabolism affected by drought. The leaves’ functional characteristics after rewatering cannot be completely recovered to full-irrigation levels, and the recovery extent was strongly linked to the duration. Consequently, it is considered desirable to maintain normal physiological activity during the cotton reproductive period, and the drought episode can be sustained for 1 day in a long-term perspective when the soil water content is depleted to 40% ± 5% of the soil water holding capacity. These results can provide in-depth ideas for better understanding the hydraulic and physiological responses of cotton to drought episodes and rewatering, and they can help drought-affected cotton to cope with future climate change.

Funder

the Chinese Universities Scientific Fund

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3