Effects of Light Conversion Film on the Growth of Leafy Vegetables in Facilities under Haze Weather

Author:

Li Jingjing,Zhangzhong Lili,Zhang Xin,Wei Xiaoming,Zhang Shirui,Wang Lichun,Zheng Wengang

Abstract

The light intensity is low in haze weather, and the facility is in a weak light environment for a long time. As a functional film, light conversion film (LCF) can improve the light conversion performance and is conducive to regulating the environment in the facility to promote crop growth. It can be seen from the test that the light transmittance of LCF under visible light conditions (400–780 nm) is 8.67% higher than that of ordinary film (OF), with stronger light transmittance. In the red–orange light band (600–700 nm), the LCF is 1.3% higher than that of the OF. Through the detection of irradiance, it was found that the irradiance was outdoor environment > LCF > OF in any weather. A two-year greenhouse experiment was conducted to study the effect of LCF on the whole growth process of facility agriculture (environment-soil-crop) under weak light. It is found that LCF reduces the air humidity by 0.47~2.83%; it has an obvious warming effect on the surface soil of greenhouse, and it is linearly correlated with temperature. In terms of crop growth, LCF significantly (p < 0.05) increased the photosynthetic rate at heading stage, and finally increased the yield, total soluble sugar and reduction-type Vitamin C by 8.97–39.53%, 9.22–30.14%, and 1.41–21.09%, respectively. In addition, considering the frequent haze weather in North China, the use of LCF can improve air temperature, CO2 concentration, photosynthetically active radiation (PAR), and soil temperature, and it can effectively deal with the challenge of weak light. In conclusion, LCF can improve the facility environment and improve crop yield and quality, indicating that the implementation of LCF has potential benefits in solving crop yield reduction and quality decline in haze weather. In addition, as the main component of LCF, rare earth materials are a new type of clean energy, which can effectively promote the sustainable development of the agricultural ecosystem.

Funder

the Yunnan Science and Technology Major Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference28 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3