Exploring Optimal Cropping System to Improve the Water Use Efficiency and Soil Water Restoration after Lucerne-to-Crop Conversion in the Semiarid Environment

Author:

Wang LinlinORCID,Luo Zhuzhu,Li LinglingORCID,Xie Junhong,Fudjoe Setor Kwami,Zechariah Effah

Abstract

Due to depleting water supplies and the cultivation of high water-demanding crops such as lucerne, the effect of water deficits in crop production has become a major concern, especially in semiarid regions of China. A six-year field experiment (2012–2018) was conducted to evaluate soil water recovery and soil fertility after lucerne-to-crop conversions on the western Loess Plateau of China. Six rotation treatments (lucerne initially grew from 2003 to 2012 followed by the rotation of other crops or fallow until assessments in 2018) were: (1) lucerne (Medicago sativa L.)–lucerne (L-L); (2) lucerne–fallow (L-F); (3) lucerne–wheat (Triticum aestivum L.) (L-W); (4) lucerne–corn (Zea mays L.) (L-C); (6) lucerne–potato (Solanum tuberosum L.) (L-P); and (6) lucerne–millet (Setaria italica) (L-M). The same crops were grown each year after cultivation during 2013–2018. According to the findings, all rotation types gradually increased the soil water content, with the 0–110 cm soil layer experiencing the maximum soil water replenishment rate, followed by the 110–200 and 200–300 cm soil layers. After converting lucerne to crops, the amount of organic carbon, total nitrogen, and mineral nitrogen in the soil decreased, whereas total phosphorus and accessible phosphorus increased. Soil bulk density was reduced under rotation treatments. Soil water absolute restoration index was the highest under L-F, followed by L-C, L-W, L-P, and L-M. The rate of soil water recovery was 39.5, 33.0, 33.7, 33.5, 29, and 8.2 mm yr−1 under L-F, L-W, L-C, L-P, L-M, and L-L, respectively. The net economic return was greatest under L-C, followed by L-L, L-W, L-P, and L-M. From the analysis of the long-term experimental results, this study shows that the effect of soil water restoration is greatest when continuous alfalfa is converted into wheat, corn, and potato or fallow after 9 years. When the economic benefits and soil moisture recovery are considered comprehensively, corn sown in a ridge–furrow system with fully plastic film annual mulching is the most suitable field management practice after lucerne-to-crop conversion on the western Loess Plateau of China.

Funder

Gansu Agricultural University

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3