Additional organic and bacterium fertilizer input regulated soybean root architecture and dry matter distribution for a sustainable yield in the semi-arid Region of China

Author:

Liu Yu,Liu Chuhua,Wei Lichao,Zhang Xudong,Liu Qinhui,Bai Jiling,Wang XiaolinORCID,Zhang Suiqi

Abstract

In the dryland area of the Loess Plateau in northwest China, long-term excessive fertilization has led to soil compaction and nutrient loss, which in turn limits crop yield and soil productivity. To address this issue, we conducted experiments using environmentally friendly organic fertilizer and bacterium fertilizer. Our goal was to investigate the effects of additional organic and bacterium fertilizer inputs on soil water migration, crop root architecture, and yield formation. We implemented six different fertilizer strategies, namely: Nm (mulching, N 30 kg/ha), NPK1m (mulching, N 60 kg/ha; P 30 kg/ha; K 30 kg/ha), NPK2m (mulching, N 90 kg/ha; P 45 kg/ha; K 30 kg/ha), NPKOm (mulching, N 90 kg/ha; P 45 kg/ha; K 30 kg/ha; organic fertilizer 2 t/ha), NPKBm (mulching, N 60 kg/ha; P 30 kg/ha; K 30 kg/ha; bacterium fertilizer 10 kg/ha), and N (N 30 kg/ha; no mulching). The results revealed that the addition of bacterium fertilizer (NPKBm) had a positive impact on soybean root system development. Compared with the other treatments, it significantly increased the total root length, total root surface area, and total root length density by 25.96% ~ 94.89%, -19.63% ~ 36.28%, and 9.36% ~ 28.84%, respectively. Furthermore, NPKBm enhanced soil water consumption. In 2018, water storage during the flowering and podding periods decreased by 12.63% and 19.65%, respectively, while water consumption increased by 0.97% compared to Nm. In 2019, the flowering and harvest periods decreased by 23.49% and 11.51%, respectively, while water consumption increased by 0.65%. Ultimately, NPKBm achieved high grain yield and significantly increased water use efficiency (WUE), surpassing other treatments by 76.79% ~ 78.97% and 71.22% ~ 73.76%, respectively. Subsequently, NPK1m also exhibited significant increases in yield and WUE, with improvements of 35.58% ~ 39.27% and 35.26% ~ 38.16%, respectively. The use of bacterium fertilizer has a profound impact on soybean root architecture, leading to stable and sustainable grain yield production.

Funder

Shaanxi Provincial Department of Agriculture and Rural Affairs Agricultural Science and Technology Innovation Drive Project

Yulin Science and Technology Plan Industry-University-Research Cooperation Project

Natural Science Foundation of Shaanxi Province

National Natural Science Foundation of China

central guiding local science and technology development funds Shaanxi Province engineering technology research center project

Publisher

Public Library of Science (PLoS)

Reference42 articles.

1. Macro and Micro-Nutrient Accumulation and Partitioning in Soybean Affected by Water and Nitrogen Supply;IS Setubal;Plants (Basel, Switzerland),2023

2. Carbon Dots Improve Nitrogen Bioavailability to Promote the Growth and Nutritional Quality of Soybeans under Drought Stress;C Wang;ACS Nano,2022

3. Density-Dependent Fertilization of Nitrogen for Optimal Yield of Perennial Rice;G Huang;Agronomy,2022

4. Biological Nitrogen Fixation of Cowpea in a No-Till Intercrop under Contrasting Rainfed Agro-Ecological Environments;ET Mogale;Sustainability,2023

5. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions;MA Rondon;Biology and Fertility of Soils,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3