Growth and Acclimation of In Vitro-Propagated M9 Apple Rootstock Plantlets under Various Visible Light Spectrums

Author:

Chung Guem-Jae,Lee Jin-Hui,Oh Myung-Min

Abstract

This study aimed to explore the suitable light quality condition for ex vitro acclimation of M9 apple plantlets. Light quality treatments were set as followed; monochromatic LEDs (red (R), green (G), blue (B)) and polychromatic LEDs (R:B = 7:3, 8:2 and 9:1; R:G:B = 6:1:3, 7:1:2 and 8:1:1). Plant height of R, R9B1, and R8G1B1 treatments were significantly higher than the other treatments. The number of leaves and SPAD value of B were significantly higher than the other treatments. Root fresh weights of R9B1 and R7G1B2 treatments showed an increase of at least 1.7-times compared to R, G and R8B2. R8G1B1 accumulated higher starch contents than the other treatments. Photosynthetic rate of R9B1 and R8B2 were significantly higher than the other treatments. In terms of stomatal conductance and transpiration rate, treatments with high blue ratio such as B, R7B3 had higher values. Rubisco concentration was high in R and B among monochromatic treatments. In conclusion, red light was effective to increase photosynthetic rate and biomass and blue light increased chlorophyll content and stomatal conductance. Therefore, for R9B1 and R8G1B1, a mixture of high ratio of red light with a little blue light would be proper for the acclimation of in vitro-propagated apple rootstock M9 plantlets to an ex vitro environment.

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference58 articles.

1. Hardwood tree biotechnology

2. Acclimatization of Micropropagated Plants

3. Acclimatization of tissue-cultured plants;Hazarika;Curr. Sci.,2003

4. Plant physiology;Kwak,2004

5. Acclimatization of tissue cultured plantlets: from laboratory to land

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3