Natural Variation in Fatty Acid Composition of Diverse World Soybean Germplasms Grown in China

Author:

Abdelghany Ahmed M.ORCID,Zhang ShengruiORCID,Azam Muhammad,Shaibu Abdulwahab S.ORCID,Feng Yue,Qi Jie,Li Yanfei,Tian Yu,Hong Huilong,Li Bin,Sun JunmingORCID

Abstract

Soybean (Glycine max L. Merr.) is one of the most important crops in the world. Its major content of vegetable oil made it widely used for human consumption and several food industries. To investigate the variation in seed fatty acid composition of soybeans from different origins, a set of 633 soybean accessions originated from four diverse germplasm collections—including China, United States of America (USA), Japan, and Russia—were grown in three locations, Beijing, Anhui, and Hainan for two years. The results showed significant differences (P < 0.001) among the four germplasm origins for all fatty acid contents investigated. Higher levels, on average, of palmitic acid (PA) and linolenic acid (LNA) were observed in Russian germplasm (12.31% and 8.15%, respectively), whereas higher levels of stearic acid (SA) and oleic acid (OA) were observed in Chinese germplasm (3.95% and 21.95%, respectively). The highest level of linoleic acid (LA) was noticed in the USA germplasm accessions (56.34%). The largest variation in fatty acid composition was found in LNA, while a large variation was observed between Chinese and USA germplasms for LA level. Maturity group (MG) significantly (P < 0.0001) affected all fatty acids and higher levels of PA, SA, and OA were observed in early maturing accessions, while higher levels of LA and LNA were observed in late maturing accessions. The trends of fatty acids concentrations with different MG in this study further provide an evidence of the importance of MG in breeding for such soybean seed components. Collectively, the unique accessions identified in this study can be used to strengthen the soybean breeding programs for meeting various human nutrition patterns around the globe.

Funder

Ministry of Science and Technology

National Major Science and Technology Project

National Natural Science Foundation of China

Beijing Science and Technology Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3