Influence of Canopy Cover and Meteorological Factors on the Abundance of Bark and Ambrosia Beetles (Coleoptera: Curculionidae) in Avocado Orchards Affected by Laurel Wilt

Author:

Menocal Octavio,Kendra Paul E.ORCID,Padilla Armando,Chagas Pollyana C.,Chagas Edvan A.ORCID,Crane Jonathan H.ORCID,Carrillo DanielORCID

Abstract

In the last decade in South Florida, approximately 200,000 avocado trees have succumbed to laurel wilt (LW), a fungal disease vectored by ambrosia beetles. Sanitation (e.g., pruning, stumping, and removal of LW–affected trees) and replanting with young trees are cultural practices currently used by avocado growers to reduce the incidence of LW. Surveillance in these managed orchards suggests a decline in ambrosia beetle abundance, and previous research determined that female flight activity is influenced by light intensity. Therefore, we investigated the effect of three canopy covers (i.e., full canopy, topworked, and new planting) on ambrosia beetle abundance. A total of 28,184 individuals, representing 15 species within Scolytinae and Platypodinae, were captured passively in three LW–affected avocado orchards over a one-year period. Full canopy cover exhibited the highest number of beetles and the lowest light intensity. The opposite was found for topworked and new planting covers. Additionally, we documented the effect of meteorological factors on the flight dispersal of five species known to vector the LW pathogen. The flight activity of Xylosandrus crassiusculus and Xyleborinus saxesenii was highly influenced by abiotic factors (R2 > 0.50), especially solar radiation, whereas the flight of Xyleborus affinis, Xyleborus volvulus, and Xyleborus bispinatus was only partially explained by climatic variables (0.20 < R2 < 0.30). Our results indicate that reducing canopy cover, thereby increasing light intensity, suppresses ambrosia beetle abundance, especially for species associated with the LW pathogen. Abiotic factors play a critical role in the dispersal of invasive species (X. crassiusculus and X. saxesenii), but their effect is less pronounced on native species (X. affinis, X. volvulus, and X. bispinatus). Canopy management alters the microclimatic conditions in avocado orchards, affecting ambrosia beetle abundance and flight activity.

Funder

National Institute of Food and Agriculture

Non-Assistance Cooperative Agreement between USDA-ARS and the University of Florida

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference66 articles.

1. FAOSTAT—Countries by Commodity https://www.fao.org/faostat/en/#rankings/countries_by_commodity.

2. Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae) that Breed in Avocado Wood in Florida

3. α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae)

4. Comparison of trap designs for detection of Euwallacea nr;Kendra;fornicatus and other Scolytinae (Coleoptera: Curculionidae) that vector fungal pathogens of avocado trees in Florida. J. Econ. Entomol.,2020

5. Vertical Distribution and Daily Flight Periodicity of Ambrosia Beetles (Coleoptera: Curculionidae) in Florida Avocado Orchards Affected by Laurel Wilt

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3