Author:
Dodds Kevin J.,Sweeney Jon,Francese Joseph A.,Besana Laura,Rassati Davide
Abstract
AbstractThe use of semiochemical-baited traps for detection, monitoring, and sampling bark beetles and woodboring beetles (BBWB) has rapidly increased since the early 2000s. Semiochemical-baited survey traps are used in generic (broad community level) and specific (targeted toward a species or group) surveys to detect nonnative and potentially invasive BBWB, monitor established populations of invasive or damaging native species, and as a tool to survey natural communities for various purposes. Along with expansion in use, much research on ways to improve the efficacy of trapping surveys for the detection of specific pests as well as BBWB in general has been conducted. In this review, we provide information on intrinsic and extrinsic factors and how they influence the efficacy of detecting BBWB in traps. Intrinsic factors, such as trap type and color, and other factors are described, as well as important extrinsic factors such as habitat selection, horizontal and vertical placement, and disturbance. When developing surveys, consideration of these factors should increase the species richness and/or abundance of BBWB captured in traps and increase the probability of detecting nonnative species that may be present. During generic surveys, deploying more than one trap type or color, using an array of lures, and trapping at different vertical and horizontal positions is beneficial and can increase the number of species captured. Specific surveys generally rely on predetermined protocols that provide recommendations on trap type, color, lure, and trap placement.
Funder
Natural Resources Canada, Canadian Forest Service, Pest Risk Management Program
European Union Next-GenerationEU
Università degli Studi di Padova
Publisher
Springer Science and Business Media LLC
Reference358 articles.
1. Allison A, Samuelson GA, Miller SE (1997) Patterns of beetle species diversity in Castanopsis acuminatissima (Fagaceae) trees studied with canopy fogging in mid-montane New Guinea rainforest. In: Stork NE, Adis J, Didham RK (eds) Canopy arthropods. Chapman & Hall, London, pp 224–236
2. Allison JD, Borden JH (2001) Observations on the behavior of Monochamus scutellatus (Coleoptera: Cerambycidae) in northern British Columbia. J Entomol Soc BC 98:195–200
3. Allison JD, Redak RA (2017) The impact of trap type and design features on survey and detection of bark and woodboring beetles and their associates: a review and meta-analysis. Annu Rev Entomol 62:127–146. https://doi.org/10.1146/annurev-ento-010715-023516
4. Allison JD, Borden JH, Seybold SJ (2004) A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14:123–150. https://doi.org/10.1007/s00049-004-0277-1
5. Allison JD, Johnson CW, Meeker JR, Strom BL, Butler SM (2011) Effect of aerosol surface lubricants on the abundance and richness of selected forest insects captured in multiple-funnel and panel traps. J Econ Entomol 104:1258–1264. https://doi.org/10.1603/EC11044
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献