A Machine Vision-Based Method for Tea Buds Segmentation and Picking Point Location Used on a Cloud Platform

Author:

Lu Jinzhu12,Yang Zhiming12,Sun Qianqian2,Gao Zongmei3ORCID,Ma Wei4

Affiliation:

1. Modern Agricultural Equipment Research Institute, Xihua University, Chengdu 610039, China

2. School of Mechanical Engineering, Xihua University, Chengdu 610039, China

3. Center for Precision and Automated Agricultural Systems, Department of Biological Systems Engineering, Washington State University, Prosser, WA 99350, USA

4. Chinese Academy of Agriculture Sciences Institute of Urban Agriculture, Chengdu 610213, China

Abstract

The segmentation and positioning of tea buds are the basis for intelligent picking robots to pick tea buds accurately. Tea images were collected in a complex environment, and median filtering was carried out to obtain tea bud images with smooth edges. Four semantic segmentation algorithms, U-Net, high-resolution network (HRNet_W18), fast semantic segmentation network (Fast-SCNN), and Deeplabv3+, were selected for processing images. The centroid of the tea buds and the image center of the minimum external rectangle were calculated. The farthest point from the centroid was extracted from the tea stalk orientation, which was the final picking point for tea buds. The experimental results showed that the mean intersection over union (mIoU) of HRNet_W18 was 0.81, and for a kernel with a median filter size of 3 × 3, the proportion of abnormal tea buds was only 11.6%. The average prediction accuracy of picking points with different tea stalk orientations was 57%. This study proposed a fresh tea bud segmentation and picking point location method based on a high-resolution network model. In addition, the cloud platform can be used for data sharing and real-time calculation of tea bud coordinates, reducing the computational burden of picking robots.

Funder

Chengdu Science and Technology Bureau

Department of Science and Technology of Sichuan Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3