Segmentation Network for Multi-Shape Tea Bud Leaves Based on Attention and Path Feature Aggregation

Author:

Chen Tianci1,Li Haoxin1,Lv Jinhong1,Chen Jiazheng2,Wu Weibin13

Affiliation:

1. National Key Laboratory of Agricultural Equipment Technology, College of Engineering, South China Agricultural University, Guangzhou 510642, China

2. College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

3. Guangdong Engineering Technology Research Center for Creative Hilly Orchard Machinery, Guangzhou 510642, China

Abstract

Accurately detecting tea bud leaves is crucial for the automation of tea picking robots. However, challenges arise due to tea stem occlusion and overlapping of buds and leaves, presenting varied shapes of one bud–one leaf targets in the field of view, making precise segmentation of tea bud leaves challenging. To improve the segmentation accuracy of one bud–one leaf targets with different shapes and fine granularity, this study proposes a novel semantic segmentation model for tea bud leaves. The method designs a hierarchical Transformer block based on a self-attention mechanism in the encoding network, which is beneficial for capturing long-range dependencies between features and enhancing the representation of common features. Then, a multi-path feature aggregation module is designed to effectively merge the feature outputs of encoder blocks with decoder outputs, thereby alleviating the loss of fine-grained features caused by downsampling. Furthermore, a refined polarized attention mechanism is employed after the aggregation module to perform polarized filtering on features in channel and spatial dimensions, enhancing the output of fine-grained features. The experimental results demonstrate that the proposed Unet-Enhanced model achieves segmentation performance well on one bud–one leaf targets with different shapes, with a mean intersection over union (mIoU) of 91.18% and a mean pixel accuracy (mPA) of 95.10%. The semantic segmentation network can accurately segment tea bud leaves, providing a decision-making basis for the spatial positioning of tea picking robots.

Funder

2024 Rural Revitalization Strategy Special Funds Provincial Project

Guangdong Province (Shenzhen) Digital and Intelligent Agricultural Service Industrial Park

Construction of Smart Agricultural Machinery and Control Technology Research and Development

2023 Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3