Abstract
The termination or interruption of agro-forestry practices for a long period gradually results in abandoned land. Abandoned land parcels do not match the requirements to access to the basic payment of the European Common Agricultural Policy (CAP). Therefore, the identification of those parcels is key in order to return fair subsidies to farmers. In this context, the present work proposes a methodology to detect abandoned crops in the Valencian Community (Spain) from remote sensing data. The approach is based on the assessment of multitemporal Sentinel-2 images and derived spectral indices, which are used as predictors for training machine learning and deep learning classifiers. Several classification scenarios, including both abandoned and active parcels, were evaluated. The best results (98.2% overall accuracy) were obtained when a bi-directional Long Short Term Memory (BiLSTM) network was trained with a multitemporal dataset composed of twelve reflectance time series, and a derived bare soil spectral index (BSI). In this scenario we were able to effectively distinguish abandoned crops from active ones. The results revealed Sentinel-2 features are well suited for land use identification including abandoned lands, and open the possibility of implementing this type of remote sensing based methodology into the CAP payments supervision.
Funder
Conselleria d'Agricultura, Desenvolupament Rural, Emergència Climàtica i Transició Ecològica, Generalitat Valenciana
Subject
Agronomy and Crop Science
Reference33 articles.
1. Commission Implementing Regulation (EU) No 1306/2013 of the European Parliament and of the Council of 17 December 2013 on the financing, management and monitoring of the common agricultural policy and repealing Council Regulations (EEC) No 352/78, (EC) No 165/94, (EC) No 2799/98, (EC) No 814/2000, (EC) No 1290/2005 and (EC) No 485/2008;Off. J. Eur. Union,2013
2. Commission Implementing Regulation (EU) 2018/746 of 18 May 2018 amending Implementing Regulation (EU) No 809/2014 as regards modification of single applications and payment claims and checks;Off. J. Eur. Union,2018
3. Enabling the Use of Sentinel-2 and LiDAR Data for Common Agriculture Policy Funds Assignment
4. Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of the Common Agricultural Policy
5. A Copernicus Sentinel-1 and Sentinel-2 Classification Framework for the 2020+ European Common Agricultural Policy: A Case Study in València (Spain)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献