Imagery Time Series Cloud Removal and Classification Using Long Short Term Memory Neural Networks

Author:

Alonso-Sarria Francisco1ORCID,Valdivieso-Ros Carmen1ORCID,Gomariz-Castillo Francisco1ORCID

Affiliation:

1. Instituto Universitario del Agua y del Medio Ambiente, Universidad de Murcia, 30100 Murcia, Spain

Abstract

The availability of high spatial and temporal resolution imagery, such as that provided by the Sentinel satellites, allows the use of image time series to classify land cover. Recurrent neural networks (RNNs) are a clear candidate for such an approach; however, the presence of clouds poses a difficulty. In this paper, random forest (RF) and RNNs are used to reconstruct cloud-covered pixels using data from other next in time images instead of pixels in the same image. Additionally, two RNN architectures are tested to classify land cover from the series, treating reflectivities as time series and also treating spectral signatures as time series. The results are compared with an RF classification. The results for cloud removal show a high accuracy with a maximum RMSE of 0.057 for RNN and 0.038 for RF over all images and bands analysed. In terms of classification, the RNN model obtained higher accuracy (over 0.92 in the test data for the best hyperparameter combinations) than the RF model (0.905). However, the temporal–spectral model accuracies did not reach 0.9 in any case.

Publisher

MDPI AG

Reference100 articles.

1. Watson, R., Noble, I.R., Bolin, B., Ravindranath, N., Verardo, D., and Dokken, D. (2000). Land Use, Land-Use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Mason, P., Manton, M., Harrison, D., Belward, A., Thomas, A., and Dawson, D. (2024, June 06). The Second Report on the Adequacy of the Global Observing Systems for Climate in Support of the UNFCCC. Technical Report 82, 74, GCOS Rep. Available online: https://stratus.ssec.wisc.edu/igos/docs/Second_Adequacy_Report.pdf.

3. Naeem, S., Cao, C., Fatima, K., and Acharya, B. (2018). Landscape greening policies-based land use/land cover simulation for Beijing and Islamabad—An implication of sustainable urban ecosystems. Sustainability, 10.

4. Carranza-García, M., García-Gutiérrez, J., and Riquelme, J. (2019). A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks. Remote Sens., 11.

5. A Hybrid Deep Convolutional Neural Network for Accurate Land Cover Classification;Wambugu;Int. J. Appl. Earth Obs. Geoinf.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3