Regulation of Cell Wall Degradation and Energy Metabolism for Maintaining Shelf Quality of Blueberry by Short-Term 1-Methylcyclopropene Treatment

Author:

Yan Han,Wang Rui,Ji Ning,Li Jiangkuo,Ma Chao,Lei Jiqing,Ba Liangjie,Wen Guangzhong,Long Xiaobo

Abstract

In order to study a short-term and efficient technology by 1-methylcyclopropene (1-MCP) in blueberry, the fruit was treated with 0, 0.5, 1 and 3 μL/L 1-MCP for 2 h then stored at 25 ± 1 °C with 40–50% relative humidity (RH) for 9 d. The weight loss, decay incidence, respiration rate, firmness, soluble solid content (SSC), titratable acid (TA), Brix-acid ratio (BAR), sensory evaluation, content of cell wall polysaccharide, activities of cell wall composition-related enzymes and energy metabolism in blueberry were determined during shelf life. The results showed that the weight loss, decay incidence and respiration rate were reduced by 3 μL/L 1-MCP treatment. Compared to other groups, the firmness, the content of TA and anthocyanins were maintained in 3 μL/L 1-MCP-treated blueberry. In contrast, the SSC and BAR were lower compared to those untreated. However, the sensory evaluation of “taste” and “aroma” value showed no differences in all fruits. The content of protopectin, cellulose and hemicellulose was higher in 1-MCP-treated blueberry, accompanied by a decrease in polygalacturonase (PG) and pectin methyl esterase (PME) activity. The content of water-soluble pectin (WSP) was lower in 1-MCP-treated blueberry than untreated ones. The activity of phenylalanine ammonia lyase (PAL), peroxidase (POD), cinnamyl alcohol dehydrogenase (CAD) and 4-coumarate-CoA ligase (4CL) was higher in 1-MCP-treated blueberry than the untreated, which induced more serious lignification. The results of energy metabolism also showed that the 1-MCP treatment could ensure sufficient intracellular energy supply. The 3 μL/L 1-MCP treatment could maintain the shelf quality and retard decomposition of cell wall polysaccharide by ensuring sufficient intracellular energy supply and inhibiting cell wall-degrading enzymes activity. Taken together, this study highlighted an efficient and short-term 1-MCP treatment technique.

Funder

Guizhou Province Key Technology Research and Development and Application of Innovation Base for Agricultural Products Primary Processing

Discipline and Master’s Site Construction Project of Guiyang University by Guiyang City Financial Support Guiyang University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3