Effects of Rhizobium Inoculation on N2 Fixation, Phytochemical Profiles and Rhizosphere Soil Microbes of Cancer Bush Lessertia frutescens (L.)

Author:

Makgato Manaka J.,Araya Hintsa T.ORCID,du Plooy Christian P.,Mokgehle Salmina N.,Mudau Fhatuwani N.ORCID

Abstract

Plant-beneficial microorganisms are determinants of plant health and productivity. However, the effects associated with secondary plant metabolism and interactions in the rhizosphere for Cancer bush Lessertia frutescens (L.) is unclear. The study was conducted to understand the mechanism of rhizobium inoculation for L. frutescens, variations in phytochemicals, soluble sugars, and soil–plant interactions in the rhizosphere. Four rhizobium inoculation levels (0, 100, 200, and 400 g) were evaluated under the field conditions to establish the antioxidant properties, soluble sugars, and rhizosphere soil microbial diversity at 150, 240, and 330 days after planting (d.a.p). Although inoculation did not significantly affect plant biomass and N2 fixation of L. frutescens, total phenolics and flavonoids were enhanced with the application of 200 g at 240 days after planting. The antioxidant values analyzed through FRAP (Ferric reducing power assay) were highest with 100 g inoculation at 240 days after planting. Water-soluble sugars such as fructose, sucrose, and glucose increased with the application of 400, 200, and 100 g rhizobium inoculation. The rhizosphere′s carbon source utilization profiles (CSUP) did not vary significantly, depicting the weaker ability in converting C, P, and N profiles. The lowest ß glucosidase activity was observed in the bulk soil with the lowest alkaline and acid phosphatase activities. Soil microbial populations present in the bulk sample demonstrated the smallest overall enzyme activities. The variation of different variables studied indicate the potential of rhizobium inoculation. However, further studies are required to ascertain the inoculation′s effectiveness for plant growth and rhizosphere microbial populations of L. frutescens.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference61 articles.

1. Rhizosphere microbes interactions in medicinal plants;Solaiman,2015

2. Soil beneficial bacteria and their role in plant growth promotion: a review

3. Evaluating the Effectiveness of Rhizobium Inoculants and Micronutrients as Technologies for Nepalese Common Bean Smallholder Farmers in the Real-World Context of Highly Variable Hillside Environments and Indigenous Farming Practices

4. Symbiotic N2-fixation estimated by the 15N tracer technique and growth of Pueraria phaseoloides (Roxb.) Benth. Inoculated with Bradyrhizobium strain in field conditions;Sarr;Scientifica,2016

5. Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut;Arora;Curr. Sci.,2001

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3