Bioprospecting for Rhizobacteria with the Ability to Enhance Drought Tolerance in Lessertia frutescens

Author:

Hlongwane Mokgadi M.1ORCID,Dakora Felix D.1,Mohammed Mustapha2,Mokgalaka-Fleischmann Ntebogeng S.13ORCID

Affiliation:

1. Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa

2. Department of Crop Science, University for Development Studies, Tamale P.O. Box TL1882, Ghana

3. Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa

Abstract

Lessertia frutescens is a multipurpose medicinal plant indigenous to South Africa that is used for the management of cancer, stomach ulcers, wounds, etc. The use and demand for the raw materials from this plant have been increasing steadily over the years, putting strain on the dwindling wild populations. Although cultivation may provide relief to the strained supply, the persistent drought climate poses a threat to the plant’s growth and productivity. This study explored three plant-growth-promoting rhizobacteria isolates, TUTLFNC33, TUTLFNC37 and TUTLFWC74, obtained from the root nodules of Lessertia frutescens as potential bioinoculants that can improve yield, biological activities and the production of secondary metabolites in the host plant. Isolate TUTLFNC37 was identified as the most promising isolate for inoculation of Lessertia frutescens under drought conditions as it induced drought tolerance through enhanced root proliferation, osmolyte proline accumulation and stomatal closure. Superior biomass yield, phenolics, triterpenes and antioxidant activity were evident in the extracts of Lessertia frutescens inoculated with TUTLFNC37 and under different levels of drought. Furthermore, the metabolomics of the plant extracts demonstrated the ability of the isolate to withstand drastic changes in the composition of unique metabolites, sutherlandiosides A–D and sutherlandins A–D. Molecular families which were never reported in the plant (peptides and glycerolipids) were detected and annotated in the molecular networks. Although drought had deleterious effects on Lessertia frutescens, isolate TUTLFNC37 alleviated the impact of the stress. Isolate TUTLFNC37 is therefore the most promising, environmentally friendly alternative to harmful chemicals such as nitrate-based fertilizers. The isolate should be studied to establish its field performance, cross infectivity with other medicinal plants and competition with inherent soil microbes.

Funder

The South African National Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3