Effects of Weak- and Semi-Winter Cultivars of Wheat on Grain Yield and Agronomic Traits by Breaking through Traditional Area Planting

Author:

Ding YonggangORCID,Tang Xiaoqing,Zhang Xinbo,Zhu Min,Li Chunyan,Zhu Xinkai,Ding JinfengORCID,Guo WenshanORCID

Abstract

Global warming has changed the suitability of areas traditionally planted with crops, raising concerns about cereal security. To investigate the possibilities and constraints of increasing yields by breaking through traditional area plantings of wheat cultivars, a two-year field experiment was conducted in southern and northern locations in the Yangtze River basin (YRB), China (separated by approximately 180 km), with seven weak-winter types and six semi-winter types, respectively, bred for the two regions. The movement of weak-winter-type cultivars to the north increased or did not change grain yield and their grain yields were not significantly higher than those of local semi-winter-type cultivars. The movement of semi-winter-type cultivars to the south significantly decreased their yields. Thus, breaking through traditional area plantings did not significantly increase grain yields compared with those of local wheat cultivars. Grain yield of wheat planted in the northern YRB was higher by 5 to 20% than that in the southern YRB because of an increase in spikes that resulted from a longer spike formation phase. In addition, the post-anthesis leaf area declined more slowly in the northern YRB because of higher main stem and tiller survival. High-yielding cultivars always had more spikes and larger photosynthetic areas after anthesis than those of low-yielding cultivars regardless of the planting locations, which led to increases in post-anthesis biomass. However, the grain yield of different cultivars was highly variable under different environmental conditions. The coefficient of variation (CV) of grain yield in different cultivars was significantly positively correlated with the CV of spike number and post-anthesis biomass, implying that flexibility spike number and post-anthesis biomass in response to environmental changes can maximize release of yield potential. Therefore, improving main stem and tiller survival can increase spike number and maintain post-anthesis photosynthetic areas and help to establish a large, highly stable, and productive population with a high level of suitability and production through effectively utilizing the resources during the late growth phase. Valuable suggestions for breeding high-yield and -stability cultivars and confirming their planting range in the future are given.

Funder

National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference43 articles.

1. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty;Masson-Delmotte,2018

2. Late sowing date as an adaptive strategy for rainfed bean production under warming and reduced precipitation in the Mexican Altiplano?

3. Water consumption in summer maize and winter wheat cropping system based on SEBAL model in Huang-Huai-Hai Plain, China

4. Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China

5. South Asian perspective on temperature and rainfall extremes: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3