Effects of Planting Density on Root Spatial and Temporal Distribution and Yield of Winter Wheat

Author:

Zhou Jianguo,Zhang Zhiwen,Xin Yue,Chen Guodong,Wu Quanzhong,Liang Xueqi,Zhai YunlongORCID

Abstract

The root system is the only vital organ for plants to connect with soil moisture and nutrients and obtain feedback information. This research aimed to explore the response of different spike type winter wheat varieties to plant and row spacing configurations. Multi-spike and large-spike winter wheat varieties were used as materials. By setting different plant row configurations and planting densities, the spatial and temporal distribution of root length density, root diameter, root dry weight density, and the main control factors of root growth and development of winter wheat during the whole growth period were studied. The results showed that the root system was the most widely distributed and the root diameter was the largest in the 0–40 cm soil depth, with an average root system diameter of more than 0.5 mm. The root length density and root diameter peaked at the heading stage, decreased at the maturity stage, and the root dry weight density peaked at the jointing stage. The jointing stage and heading stage are the most vigorous periods of root growth in winter wheat, when the center of gravity of root growth in winter wheat is gradually moving down. Therefore, the rapid growth and elongation time of a root system can be effectively prolonged at the jointing stage and heading stage, and the root growth rate can be improved. Promoting root thickening can effectively meet the needs for water and nutrients, for the formation and filling of aboveground plants and grains, in the later stage, which is conducive to the formation of aboveground dry matter production and final yield. The root distribution was greatest in the 0–60 cm soil depth, accounting for 95.13–97.84% of the total root length. After the heading stage occurs, the upper roots begin to decline in large quantities. Thus, the jointing stage and heading stage require fertilization and other farmland management operations to increase root nutrients for the ground parts and dry matter accumulation to provide sufficient nutrients so that the number of effective panicles, grain weight, and the number of spike grains coordinate to achieve the highest grain yield. Results showed that the highest yield can be achieved with the planting pattern X2M1. A comprehensive analysis showed that the genetic characteristics of winter wheat varieties were different, and there were some differences in the correlation between wheat yield and root system at the different growth stages. The correlation between the root parameters and yield of multi-spike winter wheat during the overwintering-jointing stage was obvious. For large-spike type winter wheat in the jointing stage, the yield correlation is most obvious.

Funder

Xinjiang production and Construction Corps, South Xinjiang

Scientific innovation project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference35 articles.

1. Spatiotemporal Distribution Characteristics and Yield Impact of Uniform Winter Wheat Root Systems at Different Densities;Zhou;Fresenius Environ. Bull.,2022

2. Can Changes in Canopy and/or Root System Architecture Explain Historical Maize Yield Trends in the U.S. Corn Belt;Graeme;Crop Sci.,2009

3. Wheat root growth, grain yield and water uptake as influenced by soil water regime and depth of nitrogen placement in a loamy sand soil;Sharma;Agric. Water Manag.,1983

4. Food security: The challenge of feeding 9 billion people;Godfray;Science,2010

5. World Bank (2008). World Development Report 2008: Agriculture for Development, World Bank.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3