Effects of Sound Wave and Water Management on Growth and Cd Accumulation by Water Spinach (Ipomoea aquatica Forsk.)

Author:

Wang Su,Shao Yifan,Duan Jinsheng,He Huaidong,Xiao Qingqing

Abstract

Vegetable contamination by cadmium (Cd) is of great concern. Water spinach (Ipomoea aquatica) is a common leafy vegetable in many countries and has a strong ability to accumulate Cd. The work was conducted to study the effects of sound wave, water management, and their combination on Cd accumulation and growth of water spinach, using the following three experiments: a hydroponic trial with the treatment of a plant acoustic frequency technology (PAFT) generator in test sheds, a hydroponic trial with three music treatments (electronic music (EM), rock music (RM), and classical music (CM)) in artificial climate boxes, and a soil pot trial with treatments of PAFT and EM under non-flooded and flooded conditions. The results showed that the hydroponic treatments of PAFT and EM significantly reduced the Cd concentrations in roots and shoots (edible parts) of water spinach by 22.01–36.50% compared with the control, possibly due to sound waves decreasing the root tip number per unit area and increasing average root diameter, root surface area, and total root length. Sound wave treatments clearly enhanced water spinach biomass by 28.27–38.32% in the hydroponic experiments. In the soil experiment, the flooded treatment significantly reduced the Cd concentrations in roots and shoots by 43.75–63.75%, compared with the non-flooded treatment. The Cd decrease and the biomass increase were further driven by the PAFT supplement under the flooding condition, likely related to the alteration in root porosity, rates of radial oxygen loss, extractable soil Cd, soil Eh, and soil pH. Our results indicate that the co-application of plant acoustic frequency technology and flooded management may be an effective approach to reduce Cd accumulation in water spinach.

Funder

the National Natural Science Foundation of China

the Talent Research Fund Project of Hefei University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3