Estimation of Millet Aboveground Biomass Utilizing Multi-Source UAV Image Feature Fusion

Author:

Yang Zhongyu12,Yu Zirui1,Wang Xiaoyun12,Yan Wugeng12,Sun Shijie12,Feng Meichen12,Sun Jingjing23,Su Pengyan12,Sun Xinkai12,Wang Zhigang12,Yang Chenbo12,Wang Chao12,Zhao Yu12,Xiao Lujie12,Song Xiaoyan12,Zhang Meijun12,Yang Wude12

Affiliation:

1. College of Agricultural, Shanxi Agricultural University, Taigu, Jinzhong 030801, China

2. State Key Laboratory of Sustainable Dryland Agriculture (In Preparation), Shanxi Agricultural University, Taiyuan 030031, China

3. Department of Basic Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China

Abstract

Aboveground biomass (AGB) is a key parameter reflecting crop growth which plays a vital role in agricultural management and ecosystem assessment. Real-time and non-destructive biomass monitoring is essential for accurate field management and crop yield prediction. This study utilizes a multi-sensor-equipped unmanned aerial vehicle (UAV) to collect remote sensing data during critical growth stages of millet, including spectral, textural, thermal, and point cloud information. The use of RGB point cloud data facilitated plant height extraction, enabling subsequent analysis to discern correlations between spectral parameters, textural indices, canopy temperatures, plant height, and biomass. Multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) models were constructed to evaluate the capability of different features and integrated multi-source features in estimating the AGB. Findings demonstrated a strong correlation between the plant height derived from point cloud data and the directly measured plant height, with the most accurate estimation of millet plant height achieving an R2 of 0.873 and RMSE of 7.511 cm. Spectral parameters, canopy temperature, and plant height showed a high correlation with the AGB, and the correlation with the AGB was significantly improved after texture features were linearly transformed. Among single-factor features, the RF model based on textural indices showcased the highest accuracy in estimating the AGB (R2 = 0.698, RMSE = 0.323 kg m−2, and RPD = 1.821). When integrating two features, the RF model incorporating textural indices and canopy temperature data demonstrated optimal performance (R2 = 0.801, RMSE = 0.253 kg m−2, and RPD = 2.244). When the three features were fused, the RF model constructed by fusing spectral parameters, texture indices, and canopy temperature data was the best (R2 = 0.869, RMSE = 0.217 kg m−2, and RPD = 2.766). The RF model based on spectral parameters, texture indices, canopy temperature, and plant height had the highest accuracy (R2 = 0.877, RMSE = 0.207 kg m−2, and RPD = 2.847). In this study, the complementary and synergistic effects of multi-source remote sensing data were leveraged to enhance the accuracy and stability of the biomass estimation model.

Funder

Research Program Sponsored by the State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University

Key Research and Development Program of Shanxi Province

Shanxi Province Basic Research Project

Shanxi Agricultural University Doctoral Research Project

Shanxi Province Graduate Education Innovation Project

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3